Sunday, 1 October 2017

Serie De Tiempo Promedio Móvil


El suavizado de datos elimina la variación aleatoria y muestra las tendencias y los componentes cíclicos Inherente a la recopilación de datos tomados en el tiempo es una forma de variación al azar. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Una técnica de uso frecuente en la industria es suavizar. Esta técnica, cuando se aplica correctamente, revela más claramente la tendencia subyacente, los componentes estacionales y cíclicos. Existen dos grupos distintos de métodos de suavizado Métodos de promedio Métodos exponenciales de suavizado Tomar promedios es la forma más sencilla de suavizar los datos Primero investigaremos algunos métodos de promediación, como el promedio simple de todos los datos anteriores. Un gerente de un almacén quiere saber cuánto un proveedor típico ofrece en unidades de 1000 dólares. Se toma una muestra de 12 proveedores, al azar, obteniendo los siguientes resultados: La media o media calculada de los datos 10. El gestor decide usar esto como la estimación para el gasto de un proveedor típico. ¿Es esto una buena o mala estimación? El error cuadrático medio es una forma de juzgar qué tan bueno es un modelo Vamos a calcular el error cuadrático medio. La cantidad verdadera del error gastada menos la cantidad estimada. El error al cuadrado es el error anterior, al cuadrado. El SSE es la suma de los errores al cuadrado. El MSE es la media de los errores al cuadrado. Resultados de MSE por ejemplo Los resultados son: Errores y errores cuadrados La estimación 10 La pregunta surge: ¿podemos usar la media para pronosticar ingresos si sospechamos una tendencia? Un vistazo a la gráfica abajo muestra claramente que no debemos hacer esto. El promedio pesa todas las observaciones pasadas igualmente En resumen, declaramos que El promedio simple o la media de todas las observaciones pasadas es sólo una estimación útil para pronosticar cuando no hay tendencias. Si hay tendencias, utilice estimaciones diferentes que tengan en cuenta la tendencia. El promedio pesa todas las observaciones pasadas igualmente. Por ejemplo, el promedio de los valores 3, 4, 5 es 4. Sabemos, por supuesto, que un promedio se calcula sumando todos los valores y dividiendo la suma por el número de valores. Otra forma de calcular el promedio es añadiendo cada valor dividido por el número de valores, o 3/3 4/3 5/3 1 1.3333 1.6667 4. El multiplicador 1/3 se llama el peso. En general: barra frac fracción izquierda (frac derecha) x1 izquierda (frac derecha) x2,. ,, Izquierda (frac derecha) xn. Medios de movimiento Mediante los conjuntos de datos convencionales, el valor medio es a menudo el primero y uno de los estadísticos de resumen más útiles que se pueden calcular. Cuando los datos están en forma de series temporales, la media de la serie es una medida útil, pero no refleja la naturaleza dinámica de los datos. Los valores medios calculados en periodos de cortocircuito, ya sea antes del período actual o centrados en el período actual, suelen ser más útiles. Debido a que tales valores medios variarán o se moverán, a medida que el periodo actual se desplaza desde el tiempo t2, t3, etc., se conocen como medias móviles (Mas). Un promedio móvil simple es (típicamente) el promedio no ponderado de k valores previos. Una media móvil exponencialmente ponderada es esencialmente la misma que una media móvil simple, pero con contribuciones a la media ponderada por su proximidad al tiempo actual. Debido a que no hay una, sino toda una serie de promedios móviles para cualquier serie dada, el conjunto de Mas puede ser trazado en gráficos, analizado como una serie, y utilizado en el modelado y la predicción. Una gama de modelos puede ser construida usando medias móviles, y éstos se conocen como modelos del MA. Si estos modelos se combinan con modelos autorregresivos (AR), los modelos compuestos resultantes se conocen como modelos ARMA o ARIMA (el I es para integrado). Promedios móviles simples Puesto que una serie temporal puede considerarse como un conjunto de valores, t 1,2,3,4, n se puede calcular el promedio de estos valores. Si asumimos que n es bastante grande, y seleccionamos un entero k que es mucho menor que n. Podemos calcular un conjunto de promedios de bloques, o medias móviles simples (de orden k): Cada medida representa el promedio de los valores de datos sobre un intervalo de k observaciones. Obsérvese que la primera MA posible de orden k gt0 es que para t k. De forma más general, podemos eliminar el subíndice extra en las expresiones anteriores y escribir: Esto indica que la media estimada en el tiempo t es el promedio simple del valor observado en el tiempo t y los pasos de tiempo anteriores k -1. Si se aplican pesos que disminuyen la contribución de las observaciones que están más lejos en el tiempo, se dice que el promedio móvil se alisa exponencialmente. Los promedios móviles se usan a menudo como una forma de pronóstico, por lo que el valor estimado para una serie en el tiempo t 1, S t1. Se toma como la MA para el período hasta e incluyendo el tiempo t. p. ej. La estimación de hoy se basa en un promedio de valores anteriores registrados hasta e incluyendo ayer (para datos diarios). Los promedios móviles simples pueden ser vistos como una forma de suavizado. En el ejemplo ilustrado a continuación, el conjunto de datos sobre contaminación atmosférica que se muestra en la introducción a este tema se ha aumentado con una línea de 7 días de media móvil (MA), que se muestra aquí en rojo. Como se puede ver, la línea de MA suaviza los picos y valles en los datos y puede ser muy útil para identificar las tendencias. La fórmula estándar de cálculo de forward significa que los primeros k -1 puntos de datos no tienen ningún valor MA, pero a partir de entonces los cálculos se extienden hasta el punto final de datos de la serie. Una razón para calcular promedios móviles simples de la manera descrita es que permite calcular los valores para todos los intervalos de tiempo desde el tiempo tk hasta el presente, y A medida que se obtiene una nueva medición para el tiempo t1, la MA para el tiempo t1 se puede añadir al conjunto ya calculado. Esto proporciona un procedimiento sencillo para conjuntos de datos dinámicos. Sin embargo, hay algunos problemas con este enfoque. Es razonable argumentar que el valor medio en los últimos 3 períodos, digamos, debería estar situado en el tiempo t -1, no en el tiempo t. Y para una MA sobre un número par de períodos tal vez debería estar situado en el punto medio entre dos intervalos de tiempo. Una solución a este problema es usar cálculos de MA centrados, en los que la MA en el tiempo t es la media de un conjunto simétrico de valores alrededor de t. A pesar de sus méritos evidentes, este enfoque no se utiliza generalmente porque requiere que los datos estén disponibles para eventos futuros, lo que puede no ser el caso. En casos donde el análisis es enteramente de una serie existente, el uso de Mas centrado puede ser preferible. Los promedios móviles simples pueden considerarse como una forma de suavizado, eliminando algunos componentes de alta frecuencia de una serie temporal y destacando (pero no eliminando) las tendencias de manera similar a la noción general de filtrado digital. De hecho, las medias móviles son una forma de filtro lineal. Es posible aplicar un cálculo del promedio móvil a una serie que ya ha sido suavizada, es decir, suavizar o filtrar una serie ya suavizada. Por ejemplo, con un promedio móvil de orden 2, podemos considerar que se calcula usando pesos, por lo que la MA en x 2 0,5 x 1 0,5 x 2. Igualmente, la MA en x 3 0,5 x 2 0,5 x 3. Si Aplicar un segundo nivel de suavizado o filtrado, tenemos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 es decir, el filtro de 2 etapas Proceso (o convolución) ha producido una media móvil simétrica ponderada variablemente, con pesos. Las convoluciones múltiples pueden producir promedios móviles ponderados bastante complejos, algunos de los cuales se han encontrado de uso particular en campos especializados, como en los cálculos del seguro de vida. Medias móviles se pueden utilizar para eliminar los efectos periódicos si se calcula con la longitud de la periodicidad como un conocido. Por ejemplo, con datos mensuales, las variaciones estacionales pueden ser eliminadas (si este es el objetivo) aplicando una media móvil simétrica de 12 meses con todos los meses ponderados igualmente, excepto el primero y el último que se ponderan en 1/2. Esto es porque habrá 13 meses en el modelo simétrico (tiempo actual, t. / - 6 meses). El total se divide por 12. Se pueden adoptar procedimientos similares para cualquier periodicidad bien definida. Promedios móviles ponderados exponencialmente (EWMA) Con la fórmula del promedio móvil simple: todas las observaciones son igualmente ponderadas. Si llamamos a estos pesos iguales, alfa t. Cada uno de los k pesos sería igual a 1 / k. Por lo que la suma de los pesos sería 1, y la fórmula sería: Ya hemos visto que las aplicaciones múltiples de este proceso resultan en los pesos que varían. Con las medias móviles ponderadas exponencialmente se reduce la contribución al valor medio de las observaciones que se eliminan más en el tiempo, haciendo hincapié en los acontecimientos más recientes (locales). Esencialmente se introduce un parámetro de suavizado, 0lt alfa lt1, y la fórmula se revisa a: Una versión simétrica de esta fórmula sería de la forma: Si los pesos en el modelo simétrico son seleccionados como los términos de los términos de la expansión binomial, (1/21/2) 2q. Se sumarán a 1, y cuando q se haga grande, se aproximará a la distribución Normal. Esta es una forma de peso del núcleo, con el binomio actuando como la función del núcleo. La convolución de dos etapas descrita en la subsección anterior es precisamente esta disposición, con q1, dando los pesos. En el suavizado exponencial es necesario utilizar un conjunto de pesos que suman a 1 y que se reducen en tamaño geométricamente. Los pesos utilizados son típicamente de la forma: Para mostrar que estos pesos suman a 1, considere la expansión de 1 / como una serie. Podemos escribir y expandir la expresión entre paréntesis usando la fórmula binomial (1-x) p. Donde x (1-) y p -1, lo que da: Esto proporciona entonces una forma de media móvil ponderada de la forma: Esta suma puede escribirse como una relación de recurrencia: lo que simplifica enormemente el cálculo y evita el problema de que el régimen de ponderación Debe ser estrictamente infinito para que los pesos sumen a 1 (para valores pequeños de alfa, esto no suele ser el caso). La notación utilizada por diferentes autores varía. Algunos usan la letra S para indicar que la fórmula es esencialmente una variable suavizada y escriben: mientras que la literatura de la teoría de control usualmente usa Z en lugar de S para los valores exponencialmente ponderados o suavizados (véase, por ejemplo, Lucas y Saccucci, 1990, LUC1 , Y el sitio web del NIST para más detalles y ejemplos trabajados). Las fórmulas citadas anteriormente derivan del trabajo de Roberts (1959, ROB1), pero Hunter (1986, HUN1) utiliza una expresión de la forma: que puede ser más apropiada para su uso en algunos procedimientos de control. Con alfa 1, la estimación media es simplemente su valor medido (o el valor del elemento de datos anterior). Con 0.5 la estimación es el promedio móvil simple de las mediciones actuales y anteriores. En los modelos de predicción el valor, S t. Se utiliza a menudo como estimación o valor de pronóstico para el siguiente período de tiempo, es decir, como la estimación de x en el tiempo t 1. Así, tenemos: Esto muestra que el valor pronosticado en el tiempo t 1 es una combinación de la media móvil ponderada exponencial anterior Más un componente que representa el error de predicción ponderado, epsilon. En el tiempo t. Suponiendo que se da una serie de tiempo y se requiere una predicción, se requiere un valor para alfa. Esto puede estimarse a partir de los datos existentes mediante la evaluación de la suma de los errores de predicción al cuadrado obtenidos con valores variables de alfa para cada t 2,3. Estableciendo la primera estimación como el primer valor de datos observado, x 1. En aplicaciones de control, el valor de alfa es importante porque se usa en la determinación de los límites de control superior e inferior y afecta a la longitud de ejecución media (ARL) esperada Antes de que estos límites de control se rompen (bajo el supuesto de que las series temporales representan un conjunto de variables independientes aleatorias, distribuidas de forma idéntica con varianza común). En estas circunstancias, la varianza de la estadística de control es (Lucas y Saccucci, 1990): Los límites de control se establecen usualmente como múltiplos fijos de esta varianza asintótica, p. / - 3 veces la desviación estándar. Si alfa 0.25, por ejemplo, y se supone que los datos que se están supervisando tienen una distribución Normal, N (0,1), cuando están en control, los límites de control serán / - 1.134 y el proceso alcanzará uno u otro límite en 500 Pasos en promedio. Lucas y Saccucci (1990 LUC1) derivan los ARLs para una amplia gama de valores alfa y bajo diversas suposiciones usando procedimientos de cadena de Markov. Ellos tabulan los resultados, incluyendo el suministro de ARLs cuando la media del proceso de control ha sido desplazada por un múltiplo de la desviación estándar. Por ejemplo, con un cambio de 0.5 con alfa 0.25 el ARL es menos de 50 pasos de tiempo. Los enfoques descritos anteriormente se conocen como suavizado exponencial simple. Ya que los procedimientos se aplican una vez a la serie temporal y luego los procesos de análisis o control se llevan a cabo en el conjunto de datos suavizado resultante. Si el conjunto de datos incluye una tendencia y / o componentes estacionales, se puede aplicar el suavizado exponencial de dos o tres etapas como un medio para eliminar (modelar explícitamente) estos efectos (véase más adelante la sección sobre Pronóstico y el ejemplo trabajado del NIST ). CHA1 Chatfield C (1975) El Análisis de la Serie de Tiempos: Teoría y Práctica. Chapman y Hall, Londres HUN1 Hunter J S (1986) La media móvil exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de control del promedio móvil ponderado exponencialmente: Propiedades y mejoras. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Pruebas de gráficos de control basadas en medias móviles geométricas. Technometrics, 1, 239-2502.1 Modelos de media móvil (modelos MA) Modelos de series temporales conocidos como modelos ARIMA pueden incluir términos autorregresivos y / o términos de media móvil. En la semana 1, aprendimos un término autorregresivo en un modelo de series de tiempo para la variable x t es un valor retrasado de x t. Por ejemplo, un término autorregresivo de retardo 1 es x t-1 (multiplicado por un coeficiente). Esta lección define los términos del promedio móvil. Un término medio móvil en un modelo de serie temporal es un error pasado (multiplicado por un coeficiente). Dejamos (wt desbordamiento N (0, sigma2w)), lo que significa que los w t son idéntica, independientemente distribuidos, cada uno con una distribución normal que tiene la media 0 y la misma varianza. El modelo de media móvil de primer orden, denotado por MA (1) es (xt mu wt theta1w) El modelo de media móvil de segundo orden, denotado por MA (2) es (xt mu wt theta1w theta2w) , Denotado por MA (q) es (xt mu wt theta1w theta2w puntos thetaqw) Nota. Muchos libros de texto y programas de software definen el modelo con signos negativos antes de los términos. Esto no cambia las propiedades teóricas generales del modelo, si bien cambia los signos algebraicos de los valores estimados de los coeficientes y los términos (no cuadrados) en las fórmulas para ACF y las varianzas. Usted necesita comprobar su software para verificar si los signos negativos o positivos se han utilizado con el fin de escribir correctamente el modelo estimado. R utiliza signos positivos en su modelo subyacente, como lo hacemos aquí. Propiedades teóricas de una serie temporal con un modelo MA (1) Tenga en cuenta que el único valor distinto de cero en el ACF teórico es para el retardo 1. Todas las demás autocorrelaciones son 0. Por lo tanto, una muestra de ACF con una autocorrelación significativa sólo con el retardo 1 es un indicador de un posible modelo MA (1). Para los estudiantes interesados, las pruebas de estas propiedades son un apéndice a este folleto. Ejemplo 1 Supongamos que un modelo MA (1) es x t 10 w t .7 w t-1. Donde (wt overset N (0,1)). Así, el coeficiente 1 0,7. El ACF teórico se da por un diagrama de esta ACF sigue. La gráfica que se muestra es la ACF teórica para una MA (1) con 1 0,7. En la práctica, una muestra no suele proporcionar un patrón tan claro. Utilizando R, simulamos n 100 valores de muestra utilizando el modelo x t 10 w t .7 w t-1 donde w t iid N (0,1). Para esta simulación, sigue un diagrama de series de tiempo de los datos de la muestra. No podemos decir mucho de esta trama. A continuación se muestra el ACF de muestra para los datos simulados. Observamos un pico en el retraso 1 seguido por valores generalmente no significativos para los retrasos de 1. Obsérvese que la muestra ACF no coincide con el patrón teórico del MA subyacente (1), que es que todas las autocorrelaciones para los retrasos de 1 serán 0.Una muestra diferente tendría una ACF de muestra ligeramente diferente mostrada abajo, pero probablemente tendría las mismas características amplias. Propiedades Terapéuticas de una Serie de Tiempo con un Modelo MA (2) Para el modelo MA (2), las propiedades teóricas son las siguientes: Obsérvese que los únicos valores distintos de cero en la ACF teórica son para los retornos 1 y 2. Las autocorrelaciones para retardos mayores son 0 . Por lo tanto, una muestra de ACF con autocorrelaciones significativas en los intervalos 1 y 2, pero autocorrelaciones no significativas para retardos mayores, indica un posible modelo MA (2). Iid N (0,1). Los coeficientes son 1 0,5 y 2 0,3. Dado que se trata de una MA (2), la ACF teórica tendrá valores distintos de cero sólo en los retornos 1 y 2. Los valores de las dos autocorrelaciones distintas de cero son: Un gráfico de la ACF teórica sigue. Como casi siempre es el caso, los datos de la muestra no se comportarán tan perfectamente como la teoría. Se simularon 150 valores de muestra para el modelo x t 10 w t .5 w t-1 .3 w t-2. Donde w t iid N (0,1). A continuación se muestra el gráfico de la serie de tiempo de los datos. Al igual que con el gráfico de la serie de tiempo para los datos de la muestra MA (1), no se puede decir mucho de ella. A continuación se muestra el ACF de muestra para los datos simulados. El patrón es típico para situaciones donde un modelo MA (2) puede ser útil. Hay dos picos estadísticamente significativos en los intervalos 1 y 2, seguidos de valores no significativos para otros desfases. Tenga en cuenta que debido al error de muestreo, la muestra ACF no coincide exactamente con el patrón teórico. ACF para modelos MA (q) Una propiedad de los modelos MA (q) en general es que hay autocorrelaciones no nulas para los primeros q retrasos y autocorrelaciones 0 para todos los retrasos gt q. No unicidad de la conexión entre los valores de 1 y (rho1) en MA (1) Modelo. En el modelo MA (1), para cualquier valor de 1. El 1/1 recíproco da el mismo valor para. Por ejemplo, use 0.5 para 1. Y luego utilice 1 / (0,5) 2 para 1. Youll get (rho1) 0.4 en ambos casos. Para satisfacer una restricción teórica llamada invertibilidad. Limitamos los modelos MA (1) a tener valores con valor absoluto menor que 1. En el ejemplo dado, 1 0,5 será un valor de parámetro permisible, mientras que 1 1 / 0,5 2 no. Invertibilidad de los modelos MA Se dice que un modelo MA es invertible si es algebraicamente equivalente a un modelo de orden infinito convergente. Al converger, queremos decir que los coeficientes de AR disminuyen a 0 a medida que retrocedemos en el tiempo. Invertibilidad es una restricción programada en el software de la serie de tiempo usado para estimar los coeficientes de modelos con términos de MA. No es algo que buscamos en el análisis de datos. En el apéndice se proporciona información adicional sobre la restricción de la invertibilidad para los modelos MA (1). Nota de Teoría Avanzada. Para un modelo MA (q) con un ACF especificado, sólo hay un modelo invertible. La condición necesaria para la invertibilidad es que los coeficientes tienen valores tales que la ecuación 1- 1 y-. - q y q 0 tiene soluciones para y que caen fuera del círculo unitario. Código R para los Ejemplos En el Ejemplo 1, se representó la ACF teórica del modelo x $ _ {t} $ w $ _ {t} $. 7w t - 1. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R utilizados para trazar el ACF teórico fueron: acfma1ARMAacf (mac (0.7), lag. max10) 10 retardos de ACF para MA (1) con theta1 0.7 lags0: 10 crea una variable llamada lags que oscila entre 0 y 10. plot Abline (h0) añade un eje horizontal al diagrama El primer comando determina el ACF y lo almacena en un objeto (a0) Llamado acfma1 (nuestra elección de nombre). El comando plot (el 3er comando) traza retrasos en comparación con los valores ACF para los retornos 1 a 10. El parámetro ylab etiqueta el eje y y el parámetro principal coloca un título en la gráfica. Para ver los valores numéricos de la ACF simplemente utilice el comando acfma1. La simulación y las parcelas se realizaron con los siguientes comandos. Xcarzim. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 agrega 10 para hacer la media 10. La simulación predeterminada significa 0. plot (x, typeb, mainSimulated MA (1) data) (X, xlimc (1,10), mainACF para datos de muestra simulados) En el Ejemplo 2, se representó el ACF teórico del modelo xt 10 wt. 5 w t-1 .3 w t-2. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R utilizados fueron acfma2ARMAacf (mac (0.5.0.3), lag. max10) acfma2 lags0: 10 trama (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) con theta1 0,5, (X, typeb, principal serie MA simulado) acf (x, xlimc (1,10), x2) (1) Para los estudiantes interesados, aquí hay pruebas de las propiedades teóricas del modelo MA (1). Cuando x 1, la expresión anterior 1 w 2. Para cualquier h 2, la expresión anterior 0 (x) La razón es que, por definición de independencia del peso. E (w k w j) 0 para cualquier k j. Además, debido a que w t tiene una media 0, E (w j w j) E (w j 2) w 2. Para una serie de tiempo, aplique este resultado para obtener la ACF indicada anteriormente. Un modelo inversible MA es uno que puede ser escrito como un modelo de orden infinito AR que converge para que los coeficientes AR convergen a 0 a medida que avanzamos infinitamente en el tiempo. Bien demostrar invertibilidad para el modelo MA (1). A continuación, sustituimos la relación (2) de wt-1 en la ecuación (1) (3) (zt wt theta1 (z-theta1w) wt theta1z - theta2w) En el momento t-2. La ecuación (2) es entonces sustituimos la relación (4) por w t-2 en la ecuación (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Si continuáramos Sin embargo, si 1 1, los coeficientes que multiplican los retrasos de z aumentarán (infinitamente) en tamaño a medida que retrocedemos hacia atrás hora. Para evitar esto, necesitamos 1 lt1. Esta es la condición para un modelo de MA (1) invertible. Infinite Order MA model En la semana 3, veamos bien que un modelo AR (1) puede convertirse en un modelo de orden infinito MA: (xt - mu wt phi1w phi21w puntos phik1 w dots sum phij1w) Esta suma de términos de ruido blanco pasado es conocida Como la representación causal de un AR (1). En otras palabras, x t es un tipo especial de MA con un número infinito de términos remontándose en el tiempo. Esto se llama un orden infinito MA o MA (). Una orden finita MA es un orden infinito AR y cualquier orden finito AR es un orden infinito MA. Recordemos en la semana 1, observamos que un requisito para un AR estacionario (1) es que 1 lt1. Vamos a calcular el Var (x t) utilizando la representación causal. Este último paso utiliza un hecho básico sobre series geométricas que requiere (phi1lt1) de lo contrario la serie diverge. Navegación

No comments:

Post a Comment